The Incipient Infinite Cluster in High-dimensional Percolation

نویسندگان

  • TAKASHI HARA
  • GORDON SLADE
چکیده

We announce our recent proof that, for independent bond percolation in high dimensions, the scaling limits of the incipient infinite cluster’s two-point and three-point functions are those of integrated super-Brownian excursion (ISE). The proof uses an extension of the lace expansion for percolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents

This is the first of two papers on the critical behaviour of bond percolation models in high dimensions. In this paper, we obtain strong joint control of the critical exponents η and δ, for the nearest-neighbour model in very high dimensions d 6 and for sufficiently spreadout models in all dimensions d > 6. The exponent η describes the low frequency behaviour of the Fourier transform of the cri...

متن کامل

The Incipient Infinite Cluster in Two-Dimensional Percolation

Let Pp be the probability measure on the configurations of occupied and vacant vertices of a two-dimensional graph N, under which all vertices are independently occupied (respectively vacant) with probability p (respectively l p ) . Let p~ be the critical probability for this system and W the occupied cluster of some fixed vertex w o. We show that for many graphs N, such as Z 2, or its covering...

متن کامل

Generalizations and Interpretations of Incipient Infinite Cluster Measure on Planar Lattices and Slabs

For critical planar percolation, although there is no infinite open component, there exists giant clusters on every macroscopic scale. It is reasonable to believe that local patterns around vertices of large spanning clusters appear with frequencies given by a probability measure on occupancy configurations. This measure would inherit properties of critical percolation, but would be supported o...

متن کامل

Random walk on the incipient infinite cluster for oriented percolation in high dimensions

We consider simple random walk on the incipient infinite cluster for the spread-out model of oriented percolation on Zd × Z+. In dimensions d > 6, we obtain bounds on exit times, transition probabilities, and the range of the random walk, which establish that the spectral dimension of the incipient infinite cluster is 4 3 , and thereby prove a version of the Alexander– Orbach conjecture in this...

متن کامل

Local time on the exceptional set of dynamical percolation, and the Incipient Infinite Cluster

In dynamical critical site percolation on the triangular lattice or bond percolation on Z , we define and study a local time measure on the exceptional times at which the origin is in an infinite cluster. We show that at a typical time with respect to this measure, the percolation configuration has the law of Kesten’s Incipient Infinite Cluster. In the most technical result of this paper, we sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998